domingo, 6 de septiembre de 2015

SEMANA 2

EL SISTEMA SOLAR

El sistema solar es el  sistema planetario en el que se encuentran la tierra y otros objetos astrónomos que giran directa o indirectamente en una órbita alrededor de una única estrella conocida como el Sol.
La estrella concentra el 99,75 % de la masa del sistema solar, y la mayor parte de la masa restante se concentra en ocho planetas cuyas órbitas son prácticamente circulares y transitan dentro de un disco casi llano llamado plano eclíptico. Mientras que los cuatro más alejados, denominados gigantes gaseosos o "planetas jovianos", más masivos que los terrestres, están compuesto de hielo y gases. Los dos más grandes, Júpiter y Saturno, están compuestos principalmente de helio  e hidrógeno. Urano y Neptuno , denominados los gigantes helados, están formados mayoritariamente por agua congelada, amoniaco y metano.

Concepción artística de un disco protoplanetario.
El Sol es el único cuerpo celeste que emite luz propia, la cual es producida por la combustión de hidrogeno y su transformación en helio por la fusión nuclear . El sistema solar se formó hace unos 4600 millones de años a partir del colapso de una nube molecular. 


Concepción artística del Sistema Solar y las órbitas de sus planetas.
El sistema solar es también el hogar de varias regiones compuestas por objetos pequeños. El cinturón asteroides, ubicado entre Marte y Júpiter, es similar a los planetas terrestres ya que está constituido principalmente por roca y metal, en este se encuentra el planeta enano Ceres. Más allá de la órbita de Neptuno están el Cinturón de Kuiper , el Disco y la nube Oort, que incluyen objetos transnetuniano formados por agua, amoníaco y metano principalmente. En este lugar existen cuatro planetas enanos Haumea, Makemake, Eris y Plutón , el cual fue considerado el noveno planeta hasta el 2009. Este tipo de cuerpos celestes ubicados más allá de la órbita de Neptuno son también llamados Plutoides , los cuales junto a Ceres, poseen el suficiente tamaño para que se hayan redondeado por efectos de su gravedad, pero que se diferencian principalmente de los planetas porque no han vaciado su órbita de cuerpos vecinos



PLANETA DEL SISTEMA SOLAR

MERCURIO

Mercurio es el planeta del Sistema Solar más próximo al Sol y el más pequeño. Forma parte de los denominados planetas interiores o rocosos y carece de satélites. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10 y se hicieron observaciones con radar y radiotelescopios.
Antiguamente se pensaba que Mercurio siempre presentaba la misma cara al Sol, situación similar al caso de la Luna con la Tierra; es decir, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron impulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días, lo cual es 2/3 de su periodo de traslación. Esto no es coincidencia, y es una situación denominada resonancia orbital.
Al ser un planeta cuya órbita es inferior a la de la Tierra, Mercurio periódicamente pasa delante del Sol, fenómeno que se denomina tránsito astronómico. Observaciones de su órbita a través de muchos años demostraron que el perihelio gira 43" de arco más por siglo de lo predicho por la mecánica clásica de Newton. Esta discrepancia llevó a un astrónomo francés, Urbain Le Verrier, a pensar que existía un planeta aún más cerca del Sol, al cual llamaron Vulcano, que perturbaba la órbita de Mercurio. Ahora se sabe que Vulcano no existe; la explicación correcta del comportamiento del perihelio de Mercurio se encuentra en la Teoría General de la Relatividad.


 VENUS

Venus es el segundo planeta del Sistema Solar en orden de distancia desde el Sol, y el tercero en cuanto a tamaño, de menor a mayor. Recibe su nombre en honor a Venus, la diosa romana del amor. Se trata de un planeta de tipo rocoso y terrestre, llamado con frecuencia el planeta hermano de la Tierra, ya que ambos son similares en cuanto a tamaño, masa y composición, aunque totalmente diferentes en cuestiones térmicas y atmosféricas. La órbita de Venus es una elipse con una excentricidad de menos del 1 %, formando la órbita más circular de todos los planetas; apenas supera la de Neptuno. Su presión atmosférica es 90 veces superior a la terrestre; es por tanto la mayor presión atmosférica de todos los planetas rocosos. A pesar de estar situado más lejos del Sol que Mercurio, Venus posee la atmósfera más caliente, pues ésta atrapa mucho más calor del Sol, debido a que está compuesta principalmente por gases de invernadero, como el dióxido de carbono. Este planeta además posee el día más largo del sistema solar: 243 días terrestres, y su movimiento es dextrógiro, es decir, gira en el sentido de las manecillas del reloj, contrario al movimiento de los otros planetas. Por ello, en un día venusiano el sol sale por el Oeste y se oculta por el Este. Sus nubes, sin embargo, pueden dar la vuelta al planeta en cuatro días. De hecho, hace muchos años, antes de estudiar el planeta enviando a su superficie naves no tripuladas y estudiar su superficie con radar, se pensaba que el período de rotación de Venus era de unos cuatro días.
Al encontrarse Venus más cercano al Sol que la Tierra (es un planeta interior), siempre se puede encontrar en las inmediaciones del Sol (su mayor elongación es de 47,8°), por lo que desde la Tierra se puede ver sólo durante unas pocas horas antes del orto (salida del Sol), en unos determinados meses del año, o también durante unas pocas horas después del ocaso (puesta del Sol), en el resto del año. A pesar de ello, cuando Venus es más brillante, puede ser visto durante el día, siendo uno de los tres únicos cuerpos celestes que pueden ser vistos de día a simple vista, además de la Luna y el Sol.


TIERRA

La Tierra (del latín Terra, deidad romana equivalente a Gea, diosa griega de la feminidad y la fecundidad) es un planeta delSistema Solar que gira alrededor de su estrella -el Sol- en la tercera órbita más interna. Es el más denso y el quinto mayor de los ocho planetas del Sistema Solar. También es el mayor de los cuatro terrestres.
La Tierra se formó hace aproximadamente 4550 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida. La atmósfera y otras condiciones abióticas han sido alteradas significativamente por la biosfera del planeta, favoreciendo la proliferación de organismos aerobios, así como la formación de una capa de ozono que junto con elcampo magnético terrestre bloquean la radiación solar dañina, permitiendo así la vida en la Tierra. Las propiedades físicas de la Tierra, la historia geológica y su órbita han permitido que la vida siga existiendo. Se estima que el planeta seguirá siendo capaz de sustentar vida durante otros 500 millones de años, ya que según las previsiones actuales, pasado ese tiempo la creciente luminosidad del Sol terminará causando la extinción de la biosfera. La superficie terrestre o corteza está dividida en varias placas tectónicas que se deslizan sobre el magma durante periodos de varios millones de años. La superficie está cubierta por continentes e islas, estos poseen varios lagos, ríos y otras fuentes de agua, que junto con los océanos de agua salada que representan cerca del 71 % de la superficie construyen la hidrósfera. No se conoce ningún otro planeta con este equilibrio de agua líquida, que es indispensable para cualquier tipo de vida conocida. Los polos de la Tierra están cubiertos en su mayoría de hielo sólido (Indlandsis de la Antártida) o de banquisas (casquete polar ártico). El interior del planeta es geológicamente activo, con una gruesa capa de manto relativamente sólido, un núcleo externo líquido que genera un campo magnético, y un núcleo de hierro sólido interior aproximadamente del 88 %.


MARTE

Marte es el cuarto planeta del Sistema Solar más cercano al Sol. Llamado así por el dios de la guerra de la mitología romana Marte, recibe a veces el apodo de planeta rojo debido a la apariencia rojiza que le confiere el óxido de hierro que domina su superficie. Tiene una atmósfera delgada formada por dióxido de carbono, y dos satélites: Fobos y Deimos. Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como la Tierra) y es el planeta interior más alejado del Sol. Es, en muchos aspectos, el más parecido a la Tierra.
Tycho Brahe midió con gran precisión el movimiento de Marte en el cielo. Los datos sobre el movimiento retrógrado aparente (los llamados "lazos") permitieron a Kepler hallar la naturaleza elíptica de su órbita y determinar las leyes del movimiento planetario conocidas como leyes de Kepler.
Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra. Alcanza su valor máximo en las cuadraturas cuando el triángulo STM es rectángulo en la Tierra. Para Marte, este ángulo de fase no es nunca mayor de 42°, y su aspecto de disco giboso es análogo al que presenta la Luna 3,5 días antes o después de la Luna llena. Esta fase, visible con un telescopio de aficionado, no logró ser vista por Galileo, quien solo supuso su existencia.






CINTURON DE ASTEROIDE

El cinturón de asteroides es una región del Sistema Solar comprendida aproximadamente entre las órbitas de Marte y Júpiter. Alberga multitud de objetos irregulares, denominados asteroides, y al planeta enano Ceres. Esta región también se denomina cinturón principal con la finalidad de distinguirla de otras agrupaciones de cuerpos menores del Sistema Solar, como el cinturón de Kuiper o lanube de Oort.
Más de la mitad de la masa total del cinturón está contenida en los cinco objetos de mayor masa: Ceres, Palas, Vesta, Higia y Juno. Ceres, el más masivo de todos y el único planeta enano del cinturón, posee un diámetro de 950 km y una masa del doble que Palas y Vesta juntos. La mayoría de cuerpos que componen el cinturón son mucho más pequeños. El material del cinturón, apenas un 4 % de la masa de la Luna, se encuentra disperso por todo el volumen de la órbita, por lo que sería muy difícil chocar con uno de estos objetos en caso de atravesarlo. No obstante, dos asteroides de gran tamaño pueden chocar entre sí, formando las que se conocen como familias de asteroides, que poseen composiciones y características similares. Las colisiones también producen un polvo que forma el componente mayoritario de la luz zodiacal. Los asteroides pueden clasificarse, según su espectro y composición, en tres tipos principales: carbonáceos (tipo-C), de silicato (tipo-S) y metálicos (tipo-M).


JUPITER

Júpiter es el quinto planeta del Sistema Solar. Forma parte de los denominados planetas exteriores o gaseosos. Recibe su nombre del dios romano Júpiter (Zeus en la mitología griega).
Se trata del planeta que ofrece un mayor brillo a lo largo del año dependiendo de su fase. Es, además, después del Sol, el mayor cuerpo celeste del Sistema Solar, con una masa casi dos veces y media la de los demás planetas juntos (con una masa 318 veces mayor que la de la Tierra y tres veces mayor que la de Saturno).
Júpiter es un cuerpo masivo gaseoso, formado principalmente por hidrógeno y helio, carente de una superficie interior definida. Entre los detalles atmosféricos destacan la Gran mancha roja, un enorme anticiclón situado en las latitudes tropicales del hemisferio sur, la estructura de nubes en bandas oscuras y zonas brillantes, y la dinámica atmosférica global determinada por intensos vientos zonales alternantes en latitud y con velocidades de hasta 140 m/s (504 km/h).


 SATURNO

Saturno es el sexto planeta del Sistema Solar, el segundo en tamaño y masa después de Júpiter y el único con un sistema de anillos visible desde nuestro planeta. Su nombre proviene del dios romano Saturno. Forma parte de los denominados planetas exteriores o gaseosos. El aspecto más característico de Saturno son sus brillantes anillos. Antes de la invención del telescopio, Saturno era el más lejano de los planetas conocidos y, a simple vista, no parecía luminoso ni interesante. El primero en observar los anillos fue Galileo en 1610,1 pero la baja inclinación de los anillos y la baja resolución de su telescopio le hicieron pensar en un principio que se trataba de grandes lunas. Christiaan Huygens con mejores medios de observación pudo en 1659observar con claridad los anillos. James Clerk Maxwell en 1859 demostró matemáticamente que los anillos no podían ser un único objeto sólido sino que debían ser la agrupación de millones de partículas de menor tamaño. Las partículas que habitan en los anillos de Saturno giran a una velocidad de 48 000 km/h, 15 veces más rápido que una bala.


URANO

Urano es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, de mayor a menor, y el cuarto más masivo. Se llama así en honor de la divinidad griega del cielo Urano (del griego antiguo «Οὐρανός») el padre de Crono(Saturno) y el abuelo de Zeus (Júpiter). Aunque es detectable a simple vista en el cielo nocturno, no fue catalogado como planeta por los astrónomos de la antigüedad debido a su escasa luminosidad y a la lentitud de su órbita. Sir William Herschel anunció su descubrimiento el 13 de marzo de 1781, ampliando las fronteras conocidas del Sistema Solar hasta entonces por primera vez en la historia moderna. Urano es también el primer planeta descubierto por medio de un telescopio.
Urano es similar en composición a Neptuno, y los dos tienen una composición diferente de los otros dos gigantes gaseosos(Júpiter y Saturno). Por ello, los astrónomos a veces los clasifican en una categoría diferente, los gigantes helados. La atmósfera de Urano, aunque es similar a la de Júpiter y Saturno por estar compuesta principalmente de hidrógeno y helio, contiene una proporción superior tanto de «hielos» como de agua, amoníaco y metano, junto con trazas de hidrocarburos. Posee la atmósfera planetaria más fría del Sistema Solar, con una temperatura mínima de 49 K (-224°C). Asimismo, tiene una estructura de nubes muy compleja, acomodada por niveles, donde se cree que las nubes más bajas están compuestas de agua y las más altas de metano.En contraste, el interior de Urano se encuentra compuesto principalmente de hielo y roca.
El sistema de Urano tiene una configuración única respecto a los otros planetas puesto que su eje de rotación está muy inclinado, casi hasta su plano de revolución alrededor del Sol. Por lo tanto, sus polos norte y sur se encuentran en donde la mayoría de los otros planetas tienen el ecuador.


 NEPTUNO

Neptuno es el octavo planeta en distancia respecto al Sol y el más lejano del sistema solar. Forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre fue puesto en honor al dios romano del mar —Neptuno—, y es el cuarto planeta en diámetro y el tercero más grande en masa. Su masa es diecisiete veces la de la Tierra y ligeramente más masivo que su planeta «gemelo» Urano, que tiene quince masas terrestres y no es tan denso. En promedio, Neptuno orbita el Sol a una distancia de 30,1 ua. Su símbolo astronómico es , una versión estilizada del tridente del dios Neptuno.
Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton. Adams y Le Verrier, de forma independiente, calcularon la posición de un hipotético planeta, Neptuno, que finalmente fue encontrado por Galle, el 23 de septiembre de 1846, a menos de un grado de la posición calculada por Le Verrier. Más tarde se advirtió que Galileo ya había observado Neptuno en 1612, pero lo había confundido con una estrella.
Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Los vientos más fuertes de cualquier planeta del sistema solar se encuentran en Neptuno.



ORIGEN DEL SISTEMA  SOLAR

Desde los tiempos de Newton se ha podido especular acerca del origen de la Tierra y el Sistema Solar como un problema distinto del de la creación del Universo en conjunto. La idea que se tenía del Sistema Solar era el de una estructura con unas ciertas características unificadas:

1. - Todos los planetas mayores dan vueltas alrededor del Sol aproximadamente en el plano del ecuador solar. En otras palabras: si preparamos un modelo tridimensional del Sol y sus planetas, comprobaremos que se puede introducir en un cazo poco profundo.

2. - Todos los planetas mayores giran en torno al Sol en la misma dirección, en sentido contrario al de las agujas del reloj, si contemplamos el Sistema Solar desde la Estrella Polar.

3. - Todos los planetas mayores (excepto Urano y, posiblemente, Venus) efectúan un movimiento de rotación alrededor de su eje en el mismo sentido que su revolución alrededor del Sol, o sea de forma contraria a las agujas del reloj; también el Sol se mueve en tal sentido.

4. - Los planetas se hallan espaciados a distancias uniformemente crecientes a partir del Sol y describen órbitas casi circulares.

5. - Todos los satélites, con muy pocas excepciones, dan vueltas alrededor de sus respectivos planetas en el plano del ecuador planetario, y siempre en sentido contrario al de las agujas del reloj. La regularidad de tales movimientos sugirió, de un modo natural, la intervención de algunos procesos singulares en la creación del Sistema en conjunto.



LITOSFERA


Subducción entre placas litosféricas. Nótese que la litosfera incluye la corteza terrestre.
La litosfera o litósfera (del griego λίθος, litos, ‘piedra’ y σφαίρα, sphaíra, ‘esfera’) es la capa sólida superficial de la Tierra, caracterizada por su rigidez. Está formada por la corteza y la zona más externa del manto, y «flota» sobre la astenosfera, una capa «plástica» que forma parte del manto superior La litosfera suele tener un espesor aproximado de 50 a 300 km, siendo su límite externo la superficie terrestre. El límite inferior varía dependiendo de la definición de litósfera que se ocupe.
La litosfera está fragmentada en una serie de placas tectónicas o litosféricas, en cuyos bordes se concentran los fenómenos geológicos endógenos, como el magmatismo (incluido el vulcanismo), la sismicidad o la orogénesis.




Litosfera térmica: 

Bajo este concepto la litosfera constituye la parte del manto donde la conducción de calor predomina sobre la convección de calor, caso opuesto de lo que ocurre en la parte del manto que subyace la litosfera.


Litosfera sísmica:

La base de la litosfera se caracteriza por una reducción en la velocidad de propagación de las ondas S y una elevada atenuación de las ondas P. Esta definición tiene la ventaja que es fácilmente detectable a través de estudios sismológicos.

Litosfera elástica: 

Se llama litosfera flexura o elástica como la capa superior de la Tierra que se mueve con las placas tectónicas. Según esta definición la litosfera se define como rígida y con movimiento mecánico coherente.



Oceanografía

La oceanografía es una rama de la geografía que estudia los mares y océanos y todo lo que se relaciona con la hidrosfera, es decir, estructura y dinámica de dichos cuerpos de agua, incluyendo todo lo relacionado con ellos, desde los procesos biológicos, físicos, geológicos y químicos que se dan en ellos. La misma ciencia es llamada también en español con las expresiones ciencias del mar, oceanología y ciencias marinas y se puede dividir en algunas ramas por motivos metodológicos, atendiendo al énfasis del estudio.

La palabra oceanografía (del griego ωκεανός, "océano" y γραφειν, "describir" o "representar gráficamente") fue acuñada por primera vez en el año 1584, del francés océanographie, pero tuvo una vida corta. En el año 1880 retorna al alemán como Oceanographie. En esa misma época surgen correlativamente en otras lenguas oceanography, en inglés; oceanografía, en español. 
La formación de la palabra es basada en el vocablo geografía y responde al origen científico del cual proviene la disciplina. Sobre el modelo de la palabra geología se encuentra oceanologia, registrada por primera vez en la lengua inglesa - oceanology - en 1864. 



 TEORIA DE LA ISOSTACIA

La isostasia es la condición de equilibrio que presenta la superficie terrestre debido a la diferencia de densidad de sus partes. Se resuelve en movimientos verticales (epirogénicos) y está fundamentada en el principio de Arquímedes. Fue enunciada como principio a finales del siglo XIX.
El equilibrio isostático puede romperse por un movimiento tectónico o el deshielo de una capa de hielo. La isostasia es fundamental para el relieve de la Tierra. Los continentes son menos densos que el manto, y también que la corteza oceánica. Cuando la corteza continental se pliega acumula gran cantidad de materiales en una región concreta. Terminado el ascenso, comienza la erosión. Los materiales se depositan, a la larga, fuera de la cadena montañosa, con lo que ésta pierde peso y volumen. Las raíces ascienden para compensar esta pérdida dejando en superficie los materiales que han estado sometidos a un mayor proceso metamórfico.


Modelos isostáticos

 En 1735, en una expedición científica en Perú, Pierre Bouguer observó que la deflexión de la vertical era menor a la esperada basándose en la topografía visible de los Andes. El mismo fenómeno fue observado en un levantamiento topogràficore en la India a cargo de George Everest. De estas observaciones surgió la idea de que cierta compensación, con un contraste negativo de densidad, debe existir debajo de la topografía visible. Esto condujo al concepto de isostasia, que asume equilibrio de cada columna de la Tierra hasta cierto nivel de compensación. La condición de equilibrio isostático se plantea como:




Modelo de Pratt-Hayford

El modelo de Pratt fue desarrollado para propósitos geodésicos por Hayford. 

El modelo asume una profundidad de compensación  consante. La densidad en ausencia de topografía sería . La condición de equilibrio isostásico para una dada columna i será:
En los continentes.
En los océanos.



Modelo de Airy-Heiskanen

El modelo de Airy fue desarrollado para aplicaciones geodésicas por Heiskanen. El modelo Airy-Heiskanen es similar al de un iceberg flotando. En lugar de hielo tenemos material cortical de densidad  y en lugar de agua de mayor densidad tenemos material del manto de densidad . Si existe una elevación (como una montaña) sobre la superficie, debe existir una correspondiente raíz que se introduce dentro del manto. Como el material cortical es de menor densidad que el material del manto, existirá una fuerza de empuje que equilibre la fuerza de atracción gravitatoria de las montañas. Un mecanismo similar tiene lugar por debajo de los océanos. Como el agua de mar tiene menor densidad inducirá una raíz negativa, es decir, una corteza más fina por debajo de los océanos.

En los continentes



En los océanos:


 Modelo de Vening Meinesz
Más conocido como modelo de isostasia regional o flexión litosférica, este modelo fue propuesto en la década de 1950 a partir de estudios que Vening Meinesz realiza en los Himalayas que mostraban una raíz cortical menor de lo que predecía la teoría de Airy.
Según este modelo, la litosfera actúa como una placa elástica y su rigidez inherente distribuye las cargas topográficas sobre una región, en lugar de hacerlo por columnas.




DERIVA CONTINENTAL

La deriva continental es el desplazamiento de las masas continentales unas respecto a otras. Esta hipótesis fue desarrollada en 1912 por el alemán Alfred Wegener a partir de diversas observaciones empírico-racionales, pero no fue hasta la década de los sesenta, con el desarrollo de la tectónica de placas, cuando pudo explicarse de manera adecuada el movimiento de los continentes.



La teoría de Alfred Wegener

La teoría de la deriva continental fue propuesta originalmente por Alfred Wegener en 1915, quien la formuló basándose, entre otras cosas, en la manera en que parecen encajar las formas de los continentes a cada lado del océano Atlántico, como África y Sudamérica de lo que ya se habían percatado anteriormente Benjamin Franklin y otros. También tuvo en cuenta el parecido de la fauna fósil de los continentes septentrionales y ciertas formaciones geológicas. Más en general, Wegener conjeturó que el conjunto de los continentes actuales estuvieron unidos en el pasado remoto de la Tierra, formando un supe continente, denominado Pangea, que significa «toda la tierra». Este planteamiento fue inicialmente descartado por la mayoría de sus colegas, ya que su teoría carecía de un mecanismo para explicar la deriva de los continentes. En su tesis original, propuso que los continentes, se desplazaban sobre otra capa más densa de la Tierra que conformaba los fondos oceánicos y se prolongaba bajo ellos de la misma forma en que uno desplaza una alfombra sobre el piso de una habitación. Sin embargo, la enorme fuerza de fricción implicada, motivó el rechazo de la explicación de Wegener, y la puesta en suspenso, como hipótesis interesante pero no probada, de la idea del desplazamiento continental. En síntesis, la deriva continental es el desplazamiento lento y continuo de las masas continentales.

 

TECTONICAS DE PLACAS

La tectónica de placas (del griego τεκτονικός, tektonicós, "el que construye") es una teoría geológica que explica la forma en que está estructurada la litosfera (porción externa más fría y rígida de la Tierra). La teoría da una explicación a las placas tectónicas que forman la superficie de la Tierra y a los desplazamientos que se observan entre ellas en su movimiento sobre el manto terrestre fluido, sus direcciones e interacciones. También explica la formación de las cadenas montañosas (orogénesis). Asimismo, da una explicación satisfactoria de por qué los terremotos y los volcanes se concentran en regiones concretas del planeta (como el cinturón de fuego del Pacífico) o de por qué las grandes fosas submarinas están junto a islas y continentes y no en el centro del océano.
Las placas tectónicas se desplazan unas respecto a otras con velocidades de 2,5 cm/año1 lo que es, aproximadamente, la velocidad con que crecen las uñas de las manos. Dado que se desplazan sobre la superficie finita de la Tierra, las placas interaccionan unas con otras a lo largo de sus fronteras o límites provocando intensas deformaciones en la corteza y litosfera de la Tierra, lo que ha dado lugar a la formación de grandes cadenas montañosas (por ejemplo las cordilleras deHimalaya, Alpes, Pirineos, Atlas, Urales, Apeninos, Apalaches, Andes, entre muchos otros) y grandes sistemas de fallas asociadas con estas (por ejemplo, el sistema de fallas de San Andrés).

No hay comentarios.:

Publicar un comentario